JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, May/June - 2019
 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, AE, BT, AME, MIE, MSNT)
Time: 3 hours
Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Discuss the nature of the convergence of the series $\sum\left(\frac{n}{n+1}\right)^{n} \cdot x^{n}$
b) Test the convergence and absolute convergence of the series

$$
\begin{equation*}
\frac{1}{2}-\frac{2}{5}+\frac{3}{10}-\frac{4}{17} \ldots .+\frac{(-1)^{n+1} n}{n^{2}+1}+\ldots . . \text { to } \infty \tag{7+8}
\end{equation*}
$$

2.a) Define functional dependency of functions. Determine whether the following functions are functionally dependent or not. If functionally dependent find the relation among them.

$$
u=x+y-z ; v=x-y+z ; w=x^{2}+y^{2}+z^{2}-2 x z
$$

b) Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third may be maximum.
3.a) Trace the curve $r=a \cos 2 \theta$
b) If ρ, ρ_{2} be the radii of givature at the extremities of any chord through the pole of the cardioid $r=a(1+g \theta)$. Show that $\beta^{2}+\beta^{2}=\frac{16 a^{2}}{9}$.
4.a) Evaluate are double integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y \sqrt{x^{2}+y^{2}} d x d y$ by transforming into polar coordinates.
b) Find the yolume of the portion of the spherex ${ }^{2}+y^{2}+z^{2}=4$ lying inside the cylinder $x^{2}+y^{2}=2 x$
5.a) Solve the differential equation $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$.
b) Bacteria in a culture grow exponentially so that the initial number has doubled in 3 hours. How many times the initial number will be present after 9 hours?
[7+8]
6.a) Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.
b) Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$.
7.a) Apply Convolution theorem to evaluate $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+4\right)\left(s^{2}+25\right)}\right\}$.
b) Solve the differential equation $\frac{d^{2} x}{d t^{2}}+9 x=\sin t$ using Laplace transform given that $x(0)=1, x\left(\frac{\pi}{2}\right)=1$.
8.a) Find the directional derivative of $2 x y+z^{2}$ at $(1,-1,3)$ in the direction of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$
b) If $\bar{F}=3 x y i-y^{2} j$ then evaluate $\int_{C} \bar{F} \cdot \overline{d r}$ where C is the curve $y=2 x^{2}$ in xy-plane from $(0,0)$ to $(, 2)$

